78 research outputs found

    MaizeGDB's new data types, resources and activities

    Get PDF
    MaizeGDB is the Maize Genetics and Genomics Database. Available at MaizeGDB are diverse data that support maize research including maps, gene product information, loci and their various alleles, phenotypes (both naturally occurring and as a result of directed mutagenesis), stocks, sequences, molecular markers, references and contact information for maize researchers worldwide. Also available through MaizeGDB are various community support service bulletin boards including the Editorial Board's list of high-impact papers, information about the Annual Maize Genetics Conference and the Jobs board where employment opportunities are posted. Reported here are data updates, improvements to interfaces and changes to standard operating procedures that have been made during the past 2 years. MaizeGDB is freely available and can be accessed online at

    Standard survey methods for estimating colony losses and explanatory risk factors in Apis mellifera

    Get PDF
    This chapter addresses survey methodology and questionnaire design for the collection of data pertaining to estimation of honey bee colony loss rates and identification of risk factors for colony loss. Sources of error in surveys are described. Advantages and disadvantages of different random and non-random sampling strategies and different modes of data collection are presented to enable the researcher to make an informed choice. We discuss survey and questionnaire methodology in some detail, for the purpose of raising awareness of issues to be considered during the survey design stage in order to minimise error and bias in the results. Aspects of survey design are illustrated using surveys in Scotland. Part of a standardized questionnaire is given as a further example, developed by the COLOSS working group for Monitoring and Diagnosis. Approaches to data analysis are described, focussing on estimation of loss rates. Dutch monitoring data from 2012 were used for an example of a statistical analysis with the public domain R software. We demonstrate the estimation of the overall proportion of losses and corresponding confidence interval using a quasi-binomial model to account for extra-binomial variation. We also illustrate generalized linear model fitting when incorporating a single risk factor, and derivation of relevant confidence intervals

    BC4GO: a full-text corpus for the BioCreative IV GO task

    Get PDF
    Gene function curation via Gene Ontology (GO) annotation is a common task among Model Organism Database groups. Owing to its manual nature, this task is considered one of the bottlenecks in literature curation. There have been many previous attempts at automatic identification of GO terms and supporting information from full text. However, few systems have delivered an accuracy that is comparable with humans. One recognized challenge in developing such systems is the lack of marked sentence-level evidence text that provides the basis for making GO annotations. We aim to create a corpus that includes the GO evidence text along with the three core elements of GO annotations: (i) a gene or gene product, (ii) a GO term and (iii) a GO evidence code. To ensure our results are consistent with real-life GO data, we recruited eight professional GO curators and asked them to follow their routine GO annotation protocols. Our annotators marked up more than 5000 text passages in 200 articles for 1356 distinct GO terms. For evidence sentence selection, the inter-annotator agreement (IAA) results are 9.3% (strict) and 42.7% (relaxed) in F1-measures. For GO term selection, the IAAs are 47% (strict) and 62.9% (hierarchical). Our corpus analysis further shows that abstracts contain ∌10% of relevant evidence sentences and 30% distinct GO terms, while the Results/Experiment section has nearly 60% relevant sentences and >70% GO terms. Further, of those evidence sentences found in abstracts, less than one-third contain enough experimental detail to fulfill the three core criteria of a GO annotation. This result demonstrates the need of using full-text articles for text mining GO annotations. Through its use at the BioCreative IV GO (BC4GO) task, we expect our corpus to become a valuable resource for the BioNLP research community

    POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data

    Get PDF
    The purpose of the online resource presented here, POPcorn (Project Portal for corn), is to enhance accessibility of maize genetic and genomic resources for plant biologists. Currently, many online locations are difficult to find, some are best searched independently, and individual project websites often degrade over time—sometimes disappearing entirely. The POPcorn site makes available (1) a centralized, web-accessible resource to search and browse descriptions of ongoing maize genomics projects, (2) a single, stand-alone tool that uses web Services and minimal data warehousing to search for sequence matches in online resources of diverse offsite projects, and (3) a set of tools that enables researchers to migrate their data to the long-term model organism database for maize genetic and genomic information: MaizeGDB. Examples demonstrating POPcorn's utility are provided herein

    The Effect of Male Incarceration on Rape Myth Acceptance: Application of Propensity Score Matching Technique

    Get PDF
    The aim is to assess the effect of imprisonment on rape myth acceptance. The research used a sample of male prisoners incarcerated for non-sexual crimes (n = 98) and a sample of males drawn from the general population (n = 160). Simple linear regression did not indicate a significant effect of incarceration on rape myth acceptance. After controlling for background covariates using propensity score matching, analysis revealed a positive significant effect of incarceration on rape myth acceptance. Although further research is required, results indicate that being subject to incarceration has a significant positive effect on stereotypical thinking about rape

    A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps

    Get PDF
    BACKGROUND: Molecular markers serve three important functions in physical map assembly. First, they provide anchor points to genetic maps facilitating functional genomic studies. Second, they reduce the overlap required for BAC contig assembly from 80 to 50 percent. Finally, they validate assemblies based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy in combination with a high-throughput PCR-based screening method to anchor the maize genetic and physical maps. RESULTS: A total of 110,592 maize BAC clones (~ 6x haploid genome equivalents) were pooled into six different matrices, each containing 48 pools of BAC DNA. The quality of the BAC DNA pools and their utility for identifying BACs containing target genomic sequences was tested using 254 PCR-based STS markers. Five types of PCR-based STS markers were screened to assess potential uses for the BAC pools. An average of 4.68 BAC clones were identified per marker analyzed. These results were integrated with BAC fingerprint data generated by the Arizona Genomics Institute (AGI) and the Arizona Genomics Computational Laboratory (AGCoL) to assemble the BAC contigs using the FingerPrinted Contigs (FPC) software and contribute to the construction and anchoring of the physical map. A total of 234 markers (92.5%) anchored BAC contigs to their genetic map positions. The results can be viewed on the integrated map of maize [1,2]. CONCLUSION: This BAC pooling strategy is a rapid, cost effective method for genome assembly and anchoring. The requirement for six replicate positive amplifications makes this a robust method for use in large genomes with high amounts of repetitive DNA such as maize. This strategy can be used to physically map duplicate loci, provide order information for loci in a small genetic interval or with no genetic recombination, and loci with conflicting hybridization-based information

    Choosing a genome browser for a Model Organism Database: surveying the Maize community

    Get PDF
    As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers’ needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers’ needs. Here, we document the survey’s outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly
    • 

    corecore